首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14810篇
  免费   1448篇
  国内免费   814篇
电工技术   1619篇
综合类   830篇
化学工业   4163篇
金属工艺   1046篇
机械仪表   914篇
建筑科学   337篇
矿业工程   348篇
能源动力   805篇
轻工业   340篇
水利工程   45篇
石油天然气   350篇
武器工业   566篇
无线电   1821篇
一般工业技术   2544篇
冶金工业   504篇
原子能技术   260篇
自动化技术   580篇
  2024年   32篇
  2023年   229篇
  2022年   377篇
  2021年   442篇
  2020年   490篇
  2019年   376篇
  2018年   371篇
  2017年   508篇
  2016年   600篇
  2015年   605篇
  2014年   771篇
  2013年   852篇
  2012年   1016篇
  2011年   1126篇
  2010年   861篇
  2009年   851篇
  2008年   783篇
  2007年   937篇
  2006年   970篇
  2005年   733篇
  2004年   654篇
  2003年   636篇
  2002年   523篇
  2001年   463篇
  2000年   355篇
  1999年   296篇
  1998年   226篇
  1997年   207篇
  1996年   159篇
  1995年   132篇
  1994年   128篇
  1993年   79篇
  1992年   79篇
  1991年   43篇
  1990年   33篇
  1989年   33篇
  1988年   28篇
  1987年   14篇
  1986年   10篇
  1985年   14篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electric nanogenerators that directly convert the energy of moving drops into electrical signals require hydrophobic substrates with a high density of static electric charge that is stable in “harsh environments” created by continued exposure to potentially saline water. The recently proposed charge-trapping electric generators (CTEGs) that rely on stacked inorganic oxide–fluoropolymer (FP) composite electrets charged by homogeneous electrowetting-assisted charge injection (h-EWCI) seem to solve both problems, yet the reasons for this success have remained elusive. Here, systematic measurements at variable oxide and FP thickness, charging voltage, and charging time and thermal annealing up to 230 °C are reported, leading to a consistent model of the charging process. It is found to be controlled by an energy barrier at the water-FP interface, followed by trapping at the FP-oxide interface. Protection by the FP layer prevents charge densities up to −1.7 mC m−2 from degrading and the dielectric strength of SiO2 enables charge decay times up to 48 h at 230 °C, suggesting lifetimes against thermally activated discharging of thousands of years at room temperature. Combining high dielectric strength oxides and weaker FP top coatings with electrically controlled charging provides a new paradigm for developing ultrastable electrets for applications in energy harvesting and beyond.  相似文献   
2.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
3.
马如远 《工程塑料应用》2022,50(1):98-102,115
依据双联斜齿轮和单斜齿轮2个塑件同模注塑的需要,以双联斜齿轮塑件的模腔设计为中心,设计了一副一模两腔点浇口多板模注塑模具。模具中,双联齿轮的上、下斜齿轮斜齿分别使用2个可旋转斜齿轮成型件进行成型;单斜齿轮使用1个可旋转斜齿轮成型件进行成型。3个斜齿成型件设置成转动型成型件,依靠塑件的移动以驱动斜齿成型件转动,达到塑件斜齿脱模的目的;塑件的脱模移动有两种动力来源,一种是模具模板的打开驱动,一种是使用推管顶出驱动。模具为一种改进型三板模结构,定模侧增加了流道板,动模侧增加了垫板,从而可以实现模具的4次开模;4次开模动作中,2次用于流道废料的脱模,1次用于流道镶件的先抽芯驱动,1次用于模腔的打开和双联斜齿轮上斜齿轮的旋转脱模驱动。  相似文献   
4.
We report the study of conductive polyaniline (PANI) chain embedded Ti-MOF functionalized with CoS as a cocatalyst for hydrogen evolution reaction (HER) application. The post synthetically modified hybrid photocatalyst PANI/Ti-MOF/CoS greatly influences the redox and e? ? h+ separation process and exhibits an impressive rate of HER (~1322 μmol h?1g?1), suppressing the pristine Ti-MOF (~62 μmol h?1g?1) with apparent quantum yield (AQY) of ~3.2 and transient current response of ~46.4 μA cm?2. In this system, Ti-MOF provides the circulation of Ti3+ and Ti4+ to the reaction of photocatalytic H2 generation, where the additional PANI and CoS amended the performance of H2 production through electron enrichment and thereby improving the stability and integrity of Ti-MOF. The Electrochemical studies demonstrated increased photocurrent by interweaving Ti-MOF crystal with PANI through cation-π interaction thereby enhancing interface connection and then promoting electron transfers. The charge dynamics revealed the initial charge transfer from photoexcited PANI to encapsulated MOF framework to boost the photocatalytic performance of the system. Further, the electron movement at the Ti-MOF/CoS interface is investigated through work function and electrochemical potential of electrons (Fermi level). DFT results demonstrate the importance of CoS in improving the photocatalytic performance of hybrid Ti-MOF catalyst, which leads to superior catalytic behaviour. These results establish that the encapsulation of catalytic active sites inside MOFs with desirable energy band gaps would be an ideal choice for the production of solar fuels.  相似文献   
5.
An instrumented hot compression molding apparatus was fabricated to allow real-time monitoring and precise temperature control during the compaction and consolidation of large polyether ether ketone (PEEK) products. The objective was to determine the impact of controlled variables on the properties of the molded article. Four different strategies were designed to control the mold thermal profiles. The average crystallinity in a commercial molding process is restricted due to large thermal masses with low thermal conductivity. In contrast, this research was able to reduce the crystallinity range from 33% to 6% by developing a special controlled apparatus and implementing new processing methodologies. In this study, PEEK showed a significant increase in the modulus compared to typical values measured on commercially produced analogs, and a higher degree of property uniformity. In a single commercially molded PEEK billet, compressive modulus variability was 13% at room temperature, and 21% at 225°C. Properties of billets produced using the laboratory apparatus showed a reduction in variability to 2%.  相似文献   
6.
First examples of multichain (polycatenar) compounds, based on the π-conjugated [1]benzothieno[3,2-b]benzothiophene unit are designed, synthesized, and their soft self-assembly and charge carrier mobility are investigated. These compounds, terminated by the new fan-shaped 2-brominated 3,4,5-trialkoxybenzoate moiety, form bicontinuous cubic liquid crystalline (LC) phases with helical network structure over extremely wide temperature ranges (>200 K), including ambient temperature. Compounds with short chains show an achiral cubic phase with the double network, which upon increasing the chain length, is at first replaced by a tetragonal 3D phase and then by a mirror symmetry is broken triple network cubic phase. In the networks, the capability of bypassing defects provides enhanced charge carrier mobility compared to imperfectly aligned columnar phases, and the charge transportation is non-dispersive, as only rarely observed for LC materials. At the transition to a semicrystalline helical network phase, the conductivity is further enhanced by almost one order of magnitude. In addition, a mirror symmetry broken isotropic liquid phase is formed beside the 3D phases, which upon chain elongation is removed and replaced by a hexagonal columnar LC phase.  相似文献   
7.
《Ceramics International》2022,48(8):10420-10427
Precision glass molding (PGM) is a recently developed method to fabricate glass microgroove components. Lead glass is commonly used as an optical material due to its high refractive index and low transition temperature. A nickel-phosphorous (Ni–P) plated mold is traditionally employed in the PGM process for microstructures optics. However, leaded glass is subject to color change and can blacken during the PGM process, reducing the light transmittance of microgrooves. In this paper, an equation for the redox reaction between Ni and Pb is proposed, which is based on the diffusion of inner Ni atoms to the surface of the mold and the standard electrode potential of the Pb ions in leaded glass. A viscoelastic constitutive model of the glass is established to simulate the compression stress distribution during molding. Finally, the effects of molding pressure, molding temperature, and mold material on glass blackening are studied. The results show that the blackening of leaded glass is caused by Pb enriching the surface. The rise in molding stress and temperature increases the deformation of Ni–P plating, which promotes the diffusion of Ni atoms. By adding a titanium incorporated diamond-like carbon (Ti-DLC) coating, the deformation of the Ni–P plating during molding is suppressed, and the diffusion of Ni atoms can be prevented. In this way, the blackening of leaded glass can be prevented.  相似文献   
8.
The fashionable Parr–Pearson (PP) atoms-in-molecule/bonding (AIM/AIB) approach for determining the exchanged charge necessary for acquiring an equalized electronegativity within a chemical bond is refined and generalized here by introducing the concepts of chemical power within the chemical orthogonal space (COS) in terms of electronegativity and chemical hardness. Electronegativity and chemical hardness are conceptually orthogonal, since there are opposite tendencies in bonding, i.e., reactivity vs. stability or the HOMO-LUMO middy level vs. the HOMO-LUMO interval (gap). Thus, atoms-in-molecule/bond electronegativity and chemical hardness are provided for in orthogonal space (COS), along with a generalized analytical expression of the exchanged electrons in bonding. Moreover, the present formalism surpasses the earlier Parr–Pearson limitation to the context of hetero-bonding molecules so as to also include the important case of covalent homo-bonding. The connections of the present COS analysis with PP formalism is analytically revealed, while a numerical illustration regarding the patterning and fragmentation of chemical benchmarking bondings is also presented and fundamental open questions are critically discussed.  相似文献   
9.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
10.
采用多种分析测试方法,对3类高熔体流动速率薄壁注塑聚丙烯(PP)专用料的熔融结晶性能、光学性能、分子量分布、力学性能、毛细管流变性能、热收缩性能进行了分析研究。结果表明,K1860与2种市售主流PP1、PP2各项性能相当,其中K1860分子量分布相对PP1、PP2较窄,弯曲性能、拉伸性能更优,可满足大型薄壁注塑制品的生产要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号